Search results for "Local Binary Pattern"

showing 10 items of 15 documents

Studies on the Effectiveness of Multispectral Images for Face Recognition: Comparative Studies and New Approaches

2013

In this paper, we investigate face recognition in unconstrained illumination conditions. A twofold contribution is proposed: First, three state of the art algorithms, namely Multiblock Local Binary Pattern (MBLBP), Histogram of Gabor Phase Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) are challenged against the IRIS-M3 multispectral face data base to evaluate their robustness against high illumination variation. Second, we propose to enhance the Performance of the three mentioned algorithms, which has been drastically decreased because of the non-monotonic illumination variation that distinguishes the IRIS-M3 face database. Instead of the usual braod band images…

Computer sciencebusiness.industryLocal binary patternsMultispectral imageFeature extractionPattern recognitionSpectral bandsBinary patternFacial recognition systemRobustness (computer science)HistogramComputer visionArtificial intelligencebusiness2013 International Conference on Signal-Image Technology & Internet-Based Systems
researchProduct

Modular Method of Detection, Localization and Counting of Mutliple-Taxon Pollen Apertures Using Bag of Words

2014

International audience; Accurate recognition of airborne pollen taxa is crucial for understanding and treating allergic diseases, which affect an important proportion of the world population. Modern computer vision techniques enables the detection of discriminant characteristics. Apertures is one of these characteristic that has been little explored up to now. In this paper, a flexible method of detection, localization and counting of apertures of different pollen taxa with varying appearances is proposed. Apertures are described based by primitive images following the Bag-of-Words strat-egy. A confidence map is estimated based on the classification of sampled regions. The method is designe…

Contextual image classificationComputer sciencebusiness.industryLocal binary patternspattern recognitionaperturesCognitive neuroscience of visual object recognition[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Image segmentationmedicine.disease_cause[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Atomic and Molecular Physics and OpticsComputer Science Applicationsbag of wordsRobustness (computer science)Bag-of-words modelPollenLBPPattern recognition (psychology)medicineComputer visionArtificial intelligenceElectrical and Electronic Engineeringbusinesspalynology
researchProduct

Video-Based Depression Detection Using Local Curvelet Binary Patterns in Pairwise Orthogonal Planes

2016

International audience; Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Ort…

Local binary patternsFeature extractionVideo Recording02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingMachine learningcomputer.software_genreField (computer science)0502 economics and business0202 electrical engineering electronic engineering information engineeringCurveletHumansDiagnosis Computer-Assisted[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryDepression05 social sciencesReproducibility of ResultsPattern recognitionActive appearance modelFaceBenchmark (computing)020201 artificial intelligence & image processingPairwise comparisonArtificial intelligencebusinessPsychologycomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing050203 business & managementAlgorithmsCurse of dimensionality
researchProduct

Dynamic best spectral bands selection for face recognition

2014

In this paper, face recognition in uncontrolled illumination conditions is investigated. A twofold contribution is proposed. First, three state-of-art algorithms, namely Multiblock Local Binary Pattern (MBLBP), Histogram of Gabor Phase Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) are evaluated upon the IRIS-M3 face database to study their robustness against a high illumination variation conditions. Second, we propose to use visible multispectral images, provided by the same face database, to enhance the performance of the three mentioned algorithms. To reduce the high data dimensionality introduced by the use of multispectral images, we have designed a system t…

Local binary patternsbusiness.industryComputer scienceMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionSpectral bandsBinary patternMixture modelFacial recognition systemComputingMethodologies_PATTERNRECOGNITIONRobustness (computer science)Computer Science::Computer Vision and Pattern RecognitionHistogramComputer visionArtificial intelligencebusiness2014 48th Annual Conference on Information Sciences and Systems (CISS)
researchProduct

A New Wavelet-Based Texture Descriptor for Image Retrieval

2007

This paper presents a novel texture descriptor based on the wavelet transform. First, we will consider vertical and horizontal coefficients at the same position as the components of a bivariate random vector. The magnitud and angle of these vectors are computed and its histograms are analyzed. This empirical magnitud histogram is modelled by using a gamma distribution (pdf). As a result, the feature extraction step consists of estimating the gamma parameters using the maxima likelihood estimator and computing the circular histograms of angles. The similarity measurement step is done by means of the well-known Kullback-Leibler divergence. Finally, retrieval experiments are done using the Bro…

Local binary patternsbusiness.industryTexture DescriptorFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONWavelet transformPattern recognitionComputingMethodologies_PATTERNRECOGNITIONWaveletImage textureComputer Science::Computer Vision and Pattern RecognitionHistogramArtificial intelligencebusinessImage retrievalMathematics
researchProduct

Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.

2017

[EN] Purpose: To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). Methods: This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE 50%, and viable segments those showing 0 < LGE < 50% transmural …

MaleLocal binary patternsMyocardial InfarctionMagnetic Resonance Imaging Cine030204 cardiovascular system & hematology030218 nuclear medicine & medical imagingTECNOLOGIA ELECTRONICA03 medical and health sciencesMagnetic resonance imaging0302 clinical medicineDiagnosisMachine learningmedicineImage Processing Computer-AssistedLate gadolinium enhancementHumansIn patientcardiovascular diseasesAnalysis methodRetrospective StudiesChronic myocardial infarctionTissue SurvivalReceiver operating characteristicmedicine.diagnostic_testbusiness.industryMagnetic resonance imagingHeartGeneral MedicineMiddle AgedClassificationChronic Diseasecardiovascular systemLeft ventricular myocardiumFemaleNuclear medicinebusinessMedical physics
researchProduct

Image Colorization Method Using Texture Descriptors and ISLIC Segmentation

2017

We present a new colorization method to assign color to a grayscale image based on a reference color image using texture descriptors and Improved Simple Linear Iterative Clustering (ISLIC). Firstly, the pixels of images are classified using Support Vector Machine (SVM) according to texture descriptors, mean luminance, entropy, homogeneity, correlation, and local binary pattern (LBP) features. Then, the grayscale image and the color image are segmented into superpixels, which are obtained by ISLIC to produce more uniform and regularly shaped superpixels than those obtained by SLIC, and the classified images are further post-processed combined with superpixles for removing erroneous classific…

Pixelbusiness.industryColor imageLocal binary patternsComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionImage segmentationGrayscaleImage textureComputer Science::Computer Vision and Pattern RecognitionArtificial intelligencebusinessCluster analysisComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Classification of SD-OCT Volumes for DME Detection: An Anomaly Detection Approach

2016

International audience; Diabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binar…

SD-OCTgenetic structuresComputer scienceLocal binary patternsDiabetic macular edema[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciences010309 optics03 medical and health sciencesGaussian Mixture Model0302 clinical medicine[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Optical coherence tomography0103 physical sciencesmedicineComputer visionSensitivity (control systems)Local Binary PatternBlindnessmedicine.diagnostic_testbusiness.industryAnomaly (natural sciences)[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.diseaseMixture modeleye diseasesDiabetic Macular EdemaOutlierAnomaly detectionArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

Entropy-based Localization of Textured Regions

2011

Appearance description is a relevant field in computer vision that enables object recognition in domains as re-identification, retrieval and classification. Important cues to describe appearance are colors and textures. However, in real cases, texture detection is challenging due to occlusions and to deformations of the clothing while person's pose changes. Moreover, in some cases, the processed images have a low resolution and methods at the state of the art for texture analysis are not appropriate. In this paper, we deal with the problem of localizing real textures for clothing description purposes, such as stripes and/or complex patterns. Our method uses the entropy of primitive distribu…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniTexture atlasComputer sciencebusiness.industryLocal binary patternsLow resolutionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONCognitive neuroscience of visual object recognitionLatent Dirichlet allocationsymbols.namesakesymbolsEntropy (information theory)SegmentationComputer visionArtificial intelligencebusinessimage analysis textureComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections.

2016

This paper deals with the automated detection of Diabetic Macular Edema (DME) on Optical Coherence Tomography (OCT) volumes. Our method considers a generic classification pipeline with preprocessing for noise removal and flattening of each B-Scan. Features such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) are extracted and combined to create a set of different feature vectors which are fed to a linear-Support Vector Machines (SVM) Classifier. Experimental results show a promising sensitivity/specificity of 0.75/0.87 on a challenging dataset.

Support Vector Machinegenetic structuresDatabases FactualComputer science[INFO.INFO-IM] Computer Science [cs]/Medical Imaging02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciences[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0202 electrical engineering electronic engineering information engineeringImage Processing Computer-AssistedSegmentationComputer visionmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingDiabetic retinopathyHistogram of oriented gradientsmedicine.anatomical_structure020201 artificial intelligence & image processing[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingTomography Optical CoherenceLocal binary patternsFeature vectorDiabetic macular edemaFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingSensitivity and SpecificityMacular Edema010309 opticsOptical coherence tomographyHistogram0103 physical sciencesmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansMacular edema[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingRetinaDiabetic Retinopathybusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitionImage segmentationmedicine.diseaseeye diseasesSupport vector machineComputingMethodologies_PATTERNRECOGNITIONsense organsArtificial intelligencebusinessAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct